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ABSTRACT 

An explicit zero-current approximation is introduced to derive simple one-

dimensional expressions for the semiconductor potential, electric field and 

carrier concentrations in a non-equilibrium MIS structure which include the 

effect of the potential drop across the minority carrier inversion layer. The 

expressions are an alternative to more refined but complex models of 

semiconductor space-charge regions in which a current flows. The zero-current 

ap~roximation is particularly useful for high capacitance thin insulator MIS 

structures. 
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INTRODUCTION
 

The relationships among parameters describing the state of a semiconductor 

surface such as band-bending, semiconductor space charge, and carrier 

concentration profiles have been well established for equilibrium conditions 

[1-3l. Treatment for non-equilibrium conditions in a metal/ insulator/ 

semiconductor (MIS) device structures such as MIS tunnel diodes and charge­

coupled devices has been covered in more recent works [4-10l. These latter 

contributions have either avoided the potential drop across the surface 

minority carrier inversion layer or have involved complex numerical 

computation. 

In this brief, a zero-current approximation is introduced which simplifies 

the analytical complexity and yields expressions which are easily evaluated 

numerically. We believe that the approximation used is intuitively satisfying 

and yields insight into the important aspects of this otherwise complex 

physical system, and have found it to be useful in our modeling studies of the 

bistable metal/tunnel-oxide/semiconductor junction [11,12l. 

ANALYSIS 

In this analysis, an MIS structure on an n-type substrate (uniform doping) 

is assumed, though the results are valid for a p-type substrate with the 

appropriate sign reversals. The current density equation for the minority 

carriers (holes) is: 

(1) 

where E is the electric field, and p is the hole concentration. In the case 

where the net current is much smaller than either component of Eq. 1, then it 

is approximately correct to write 

d(ln p)/dx - (q/kT)·(dU/dx) (2) 

such that U is the semiconductor potential (negative for a depleted n-type 
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substrate) and where the Einstein relationship between mobility (~p) and 

diffusion coefficient (D ) has been employed. This is not to say that the netp 

current need be miniscule. rather. it is a statement that a sizeable net 

current can be accounted for by a slight adjustment of carrier concentration 

profiles. Integrating this equation from the surface where U = Us to a 

distance x from the oxide/semiconductor interface yields 

p(x) (3) 

where Ps is the surface minority carrier concentration. and p is defined as 

q/kT. A similar analysis for electrons yields 

n(x) = nnoexp[PU(x)] (4) 

where nno is the bulk majority carrier concentration for U = O. Writing these 

carrier concentrations in this manner is the essence of the zero-current 

approximation. and is equivalent to an a priori assumption of flat quasi-Fermi 

levels. 

The semiconductor space charge density p(x) is given by 

p(x) = q[p(x) - n(x) - Pno + nno] (5 ) 

where Pno is the bulk minority carrier concentration. and p(x) and n(x) are 

given by Eqs. 3 and 4 above. This expression for the space charge density may 

be substituted into Poisson's equation: 

(6) 

where eo is the permittivity of free space and e s is the relative dielectric 

constant of the semiconductor. and integrated following the method of Kingston 

and Neustadter [1] to yield: 

J1 2
8U(x) 8U -8U(x) Pno 8U /E(x) = - (2q/pe e ). [n (e -8U(x)-1)+p (e s +-8U(x)-e s) ] (7)[ s 0 no s p s 

In particular. the electric field at the surface is given by: 
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(8) 

For an MIS structure without voltage dependent interface trap charge, the 

gate voltage V is related to the surface potential Us and surface electricg 

field according to 

(9) 

where Vfb is the flat band voltage, sin is the relative dielectric constant of 

the insulator, and din is the insulator layer thickness. Depending upon the 

application, Eqs. 8 and 9 may be evaluated in different ways. For example, if 

the gate voltage and insulator voltage drop are fixed, then Eq. 9 may be used 

to determine Us' followed by the use of Eq. 8 to determine the surface 

minority carrier concentration Ps' 

In the case of deep depletion (pn product smaller than the square of the 

intrinsic carrier concentration n i ) or equilibrium inversion (pn = ni2 ), I~usl 

is generally much greater than unity as is exp[-~Us]' so that Eq. 8 is reduced 

to 

(10) 

Solution of this equation for Ps yields 

(11) 

where the total semiconductor space charge Qs is given by Gauss' Law as 

(12) 

In equilibrium, Ps must also satisfy 

(13) 

Equation 11 agrees with Sze [10] only if the depletion approximation is used 

for Us' For large values of inversion layer charge (as for a very thin 

insulator high capacitance MIS structure), the failure of the depletion 
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approximation to account for the voltage drop across the inversion layer 

becomes significant. The potential drop across the inversion layer &U can be 

estimated using Eq. 3 with p(x) = nno so that 

(14) 

and can exceed a hundred millivolts. 

Once Eqs. 8 and 9 have been used to establish the surface values Es and Us' 

a simple algorithm can be used to determine U(x) from the surface to the bulk. 

Using an incremental value of potential AU typically equal to 1/10~, a 

corresponding distance Ax can be determined using 

Ax = -AU/E(x) (15) 

E(x+Ax) may be determined from Eq. 7 using 

U(x+Ax) U(x) + AU (16) 

In this manner, the potential profile may be determined by working backwards 

into the bulk from the surface. In addition, p(x) and n(x) may be determined 

using Eqs. 3 and 4. It should be noted that the zero-current approximation 

yields a good estimate of U(x) through p(x), but the nature of the 

approximation results in a poor estimate of the minority carrier concentration 

p(x) near the depletion region edge and of the majority carrier concentration 

n(x) near the surface. 

CONCLUSIONS 

Some care must be exercised when utilizing these expressions for large 

values of Ps since they have been derived for a charged gas in a charged 

lattice. The local density of states and energy distribution of the carriers 

has been ignored (except through the use of n i ) and may be important in some 

applications. Quantum well effects at the surface should also be considered. 

The latter results in an increased minority carrier charge moment and an 
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increased potential drop across the inversion layer. Nevertheless, we have 

used these equations, for example. to describe the relationship between 

inversion layer areal charge density and depletion layer depth. and the 

agreement between the model and experiment has been quite good. 
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