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ABSTRACT

An optical link can provide an interface channel for the focal-plane array that is immune to electromagnetic interfer
ence (EMI) and can lower the heatload on the dewar. Our approach involves the use offiber-optics and an on$ocal.plane
optical modulator to provide an interface to the focal-plane array (FPA). The EPA drives the modulator with an electrical
signal. We evaluated specially fabricated A1GaAS/GaAS multiple quantum well (MQW) optical modulators, operating
near 840 nm, for analog modulation, and we have used the results to calculate the performance of an optical interface
link using experimentally determined device parameters. Link noise and dynamic range for an analoglinkwere estimated
from a separate experiment using pigtailed fiber components. The performance of the MOW modulator system is
compared to alternative strategies. Significant improvement in performance in comparison to conventional electronic
interfaces appears to be possible.

1. Introduction

Optical instruments emplong cryogenic focaiplane arrays must minimize power dissipation on the focal.plane.
Since cooler power efficiency is low at cryogenic temperatures, reduction of focal-plane power has strong leverage in re.
ducing total system power and cooler mass. Thchnologies that can reduce total focal-plane power dissipation, increase
focal-plane capability, reduce system power needs, or minimize instrument size and mass are of great interest for maxi-
mizing mission lifetime. The cabling between the dewar and the externaiwarm electronics is susceptible to EMI and thus
reduced signal-to-noise (SNR) performance and also provides additional leakage paths for heat to enter the cryogenic
system. Reduction in cable channel count can also lead to an increase in system reliability.

Optical interconnects are currently a topic of interest for many electronic and opto-electronic systems. The inter-
connects can be either free-space or guided. The study of guided interconnects (e.g. optical fibers) is driven by the advan-
tages they offer in freedom from EMI and potential bandwidth. Free-space interconnects, while requiring a high degree
of mechanical stability and line-of-sight clearances between optical components, offer the possibility of high density inter-
connects, since optical beams can cross in free space without interaction. The potential for optical interconnects in cryo-
genic dewar systems has been recognized for several years, but only recently has activity in this area been rt2 '.

In comparison to optical communications applications, where optical data communication speeds exceed 1 Gbit/sec,
the focal-plane application of optical interconnects requires relatively low frequency operation, e.g. from 50 kHz for
scientific applications to 100 MHz for some infrared seekers. For the transmission of scientific pixel data, approximately
12-14 bits of dynamic range are required. For FUR and other non-scientific applications, there is a trade-off made for
less dynamic range but higher data rate. In a typical scientific system, the electronic multiplexer's output amplifier dissi-
pates approximately 10 mW of power on the focal-plane. In higher data rate systems, this can rise to 100 mW dissipated
on the focal-plane.

In this paper, we explore the use of a fiber optic link between the cryogenic focal-plane and the external electronics
to replace conventional metallic cabling and electrical interfaces. Our general approach is to locate an optical source,
such as a semiconductor laser, outside the dewar in a warm environment where power dissipation is less critical. The light
is transmitted to the focal-plane where it is modulated, and the optical signal is then transmitted to the warm environment
where it can be detected and analyzed. Both digital and analog signals are under consideration. The opticallink approach
is explored both analytically and experimentally. In particular, an analysis of the system SNR is performed for the optical
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link in terms of total focal-plane power dissipation. Dynamic range is also defined and analyzed. The nonlinearity of
the optical link is also discussed. Options and trade-offs such as power dissipation versus speed are considered. Exper.
[mental measurements made with an A1GaAS/GaAS MOW modulator are reported, and the noise-limited dynamic range
of a test link was measured.

2. OptiCal lAnk Configuration

The optical readout link configuration we are considering is illustrated in Figure 1. The figure shows a focal-plane
array (FPA) and a separate optical waveguide modulator chip mounted in close proximity to it on a common substrate,
providing for a minimum length electrical interconnect between the two. The entire assembly is mounted within a dewar
at the instrument focal-plane. The use of a fiber rather than free-space optics, and a single, rather than multichannel,
configuration is essentially an assumption at this point. Alignment of the fiber to the modulator is a critical step, but it
can be done under controlled conditions during fabrication The parts can be cemented into an integral assembly, which
maintains alignment thereafter. In addition, the use of fiber optics allows for the readout light to be readily isolated from
the EPA by opaque coatings. The focal-plane array itself is assumed to contain circuitiy for multiplexing the detector
signals into a single serial output, and to provide suitable gain to match the output signal levels to the requirements of
the modulator. The required signal level can be set between 0.25 and 4 V, by design.

The modulator, seen in Figure 2, is an AIGaAs/GaAs MOW waveguide device fabricated on a chip 100 to 200 tm
long and perhaps 100 im wide. The use of a modulator of this type for modulation by a low-voltage signal was described
by Wiener et al . Its structure is very similar to that of a laser, with the active waveguide region being a few microns
deep and less than 10 tm wide. Fiber pigtails are used as the mechanism for coupling light into and out of the modulator
chip, using the same techniques commonly used to make a fiber-pigtailed laser Note that an alternative configuration
could be set up with the modulator working in reflection, using the same fiber for both input and output. In this case,
a fused coupler outside the dewar would separate the incoming laser beam from the modulated output signal. However,
a fundamental problem from increased link noise would have to be dealt with. This possibility is available for future con-
sideration, but will not be discussed here.

A single mode polarization-preserving fiber must be used between the laser and the modulator because the MOW
device is polarization sensitive. A large core, multimode fiber will suffice between the modulator and the receiver outside
the dewar. The use of such a fiber would ease the alignment requirements at the output facet of the modulator. The laser
and the fiber link design must both be optimized for low noise. The laser wavelength must be carefully matched to the
absorption band of the cooled modulator, which willbe significantly shifted in wavelength compared to its room tempera-
ture value. Actually, it will be desirable to tailor the modulator wavelength to match the laser in order to take advantage
of existing off-the-sheiulasers developed for communication applications. The optical receiver can be a typical low-noise
fiber-pigtailed detector-preamp module designed for analog communication applications but modified to optimize its
noise over an appropriate band, for example 0-1 Mhz, for this application.

3. Analysis

3.1. Readout link noise and dynamic range

In this section we calculate the theoretical dynamic range of the readout link, and relate it to readout bandwidth,
modulation index, and optical power. P1 is the coupled power from the laser, m i5 the power incident on the modulator,
A is an attenuation introduced between laser and modulator, and P is the power delivered to the optical receiver.

These quantities can be followed through the system using the following expressions:

Pm AP1 (1)

PraPm(lfM) (2)
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The representation of the modulator, equation (2), is arbitrarily set up such that the quantity a is the total insertion
loss of the modulator at maximum transmission. The modulation index, M = [Pr(max) — Pr(min)]/Pr(rnax) , and
f(O<fczl) is a time-varying parameter representing the modulator input signal. F,. (max) occurs forf=O and F,. (miii) for
1=1. The quantity S = P7(nzax) — Pr(min) = aMPm the maximum signalswing, also measured at the receiver input.

The laser noise, usually called relative intensity noise (RIN) is given by oP12 = P,2B RIN . The quantum noise,
ôPq, jS given by

ôPq
(2IwBPr)"2

(3)

where hv is the quantum energy, (2 x 1019 at ? = 1 m in mks units) and j is the quantum efficiency of the detector.
B is the signal bandwidth, which is defined our system by the receiver module.

The quantities oF,. , ôPq , and ôPi, represent the RMS value of receiver noise ,quantum noise, and laser noise,
respectively, all measured in terms of an equivalent optical noise power at the receiver input. The three principal system
noise terms, normalized by the signal swing S, are:

(ôPr\ v/ NEP
Relative detector noise f) jr (4)

Relative quantum noise (!) = 1 —M)B (5)

Relative laser noise () = ( 1 M) j (6)

The magnitude of each of these terms can be understood as a reciprocal of dynamic range, and they combine in RSS
fashion to give the total system noise. They are plotted in Figure 3, for the parameter values given in Thble 1, as a function
OfPm . It should be kept in mind that the quantum noise given by eq (5) represents an optimum theoretical performance.
A real optical receiver, especially if required to provide a high dynamic range, will have a somewhat poorer performance.
Current in biasing resistors required for the detector to operate properly over the entire dynamic range will add to the
noise 6 A KIN of -165 db/Hz, which can be reached with the quietest lasers, will produce a negligible contribution to
the total system noise. On the other hand, off-the-shelfmultimode diode lasers are much noisier. A KIN = —125 dbfHz
is typical, and would sharply limit link dynamic range.

Thble I — Parameter Values Used in Figure 3

Insertion Loss of Modulator a 0.2
Signal Bandwidth B 1.0 MHz
Modulation Index M 0.5
Receiver equivalent input noise NEP —95.0 dbmfHzla

The total relative noise can be scaled to a different system bandwidth by moving all curves vertically by a factor

B0 being the assumed 1 Mhz bandwidth. In the region of operation important for a high dynamic range analog

link, the quantum noise term (eq. 5) will dominate. The factor (1 — M)"2/M describes its dependence on modulation
index. Roughly a factor of 4 improvement in relative noise could be obtained by increasing M from 0.5 to 0. 9, at the
cost of a much larger nonlinearity.
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3.2. Electrical drive power for the modulator and nonlinearity

The preceding analysis did not depend on the details of the modulator; only on the range of its optical transmission.
However, nonlinearity and the drive voltage requirement, and with it the electrical drive power, do depend on the transfer
function ofthe modulator. The capacitance of the modulator will be dominated by the interconnection between the EPA
and the modulator chip. The electricalpowerP required to drive the modulator is Pe 2(1 /2 CV I) . Forf = 1 MHz,
EPA output signal V = 1 J' and C = 1 p1 e becomes 1 W, negligible in comparison to the typical values OfPm which
would be needed to achieve a dynamic range of several thousand.

A crude estimate of nonlinearity can be made by approximating the modulator voltage transfer function by a raised
cosine function. ForM = 0.5, the estimated departure from linearity is ½% from the best fit straightline. The nonlin-
ear term, again very crudely, will vary as M3.

4. Experimental Results

4.1. MOW device characterization

Figure 4 shows the layer structure of the MOW waveguide modulator which was grown in the JPL Microdevices Lab-
oratory by MBE in a Riber 3200 system. Ohmic contacts were evaporated on the device, and it was then mounted on a
laser mount and wire bonded. I—V curves were measured with and without incident light, respectively. To induce 1 tA
ofphotocurrent, the output power must be increased to about 360 tW. Therefore, the power dissipation due to photocur-
rent will be negligible. In all the absorption and transmission measurements, the output power from the waveguide is
less than 1 tW

A Spectra-Physics Model 3900 Ti:Sapphire laser was used to characterize the modulator. Figure 5 shows the relative
absorption spectra of the MOW waveguide modulator for different voltages. It shows that the exciton energy without
applied voltage is 1.49 ev which corresponds to ?. = 830 nm. As expected, the exciton energy is shifted to a lower value
when the waveguide is reverse biased and to a higher value when the waveguide is forward biased. Furthermore, the exci-
ton peak is broadened as the MOW waveguide is reverse biased. We estimated that the maximum modulation should
occur near the tail of the exciton absorption curve at zero applied voltage or about 843 nm. Operating at this wavelength,
the signal that drives the modulator will reverse bias the modulator. Because the absorption decreases as the voltage in-
creases, the modulated light is full-on when there is no signal.

Figure 6 shows the voltage transfer functions for different wavelengths. In the reverse-biased region, the applied volt-
age can be as large as 10 volts without causing breakdown. In the forward-biased region, the waveguide starts to emit light
at 0.85 volts. As expected, the largest modulation takes place at = 843 nm. More data points for this wavelength were
taken and plotted in Figure 7(a). To check the linearity of the 50% modulation region shown in the box in Figure 7(a),
it is blown up and plotted in Figure 7(b). The solid line in Figure 7(b) is the linear least square fit of the experimental
data. The nonlinearity is estimated to be less than 1% within the 50% modulation limit.

4.2. Link noise measurement

An experimental determination of the noise-limited dynamic range of an externally modulated fiber link was made
to compare with our theoretical estimate. The fiber optic link was made up of an Ortel 3612B-EO1 transmitter, a Crystal
Technology MZ 313P lithium niobate waveguide modulator, and an optical receiver assembled in our lab. The noise sig-
nal out of the receiver amplifier was applied to a spectrum analyzer and the noise floor was measured over two ranges,
1 kHz to 100 kHz and 1 to 40 MHz. The reading was normalized to 1 Hz bandwidth. The waveguide modulator was re-
placed with an attenuator for these measurements to avoid the effort necessary to reduce noise peaks from back reflec-
tions. The modulator was used to measure the signal swing.

The results of the noise floor measurement for the frequency range from 1 kHz to 100 kHz are shown in Fig. 8. The
noise floor curve for the 1 to 40 MHz range was virtually flat, at the —167 dbmfHz level over the entire frequency range.
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For both frequencybands, the noise floor signal level is given in terms of an RF power at the output ofthe optical receiver.
It is proportional to the square of the equivalent optical input power to the detector. Note that there is a slight slope to
the measured noise vs frequency in the 1 to 100 kHz range, which is consistentwith the difference in measured noise levels
between the 100 kHz and the 1 MHz points. The peak near zero frequency is a combination of 1/fnoise and pickup, from
60 Hz and its harmonics. The peaks at 26kHz and 52kHz are also pickup from local noise sources. These noise peaks
are typical in measurements of this type, and are very difficult to eliminate. The —167 dbmfHz figure is the RIM of the
laser transmitter, since the carrier intensitywas 1mW The measured dynamic range (signal swing + noise) was 126 dbfHz
at 100 kHz and 137 dbfHz at 1 MHz. Correcting it to be consistent with B= 1MHz and M = 0,5, one obtains the data
point shown in Figure 3, which falls above the calculated line by a factor of 3. The agreement seems safisfactory.

5. Discussions and Condusions

Our results indicate that readout of a focal plane array using fiber optics is feasible, and can achieve a significant
reduction in the heat load on the focal plane. In addition, cross talk in the readout link itself will be reduced, and heat
conductionby the readout cablingwill also be decreased. The calculated linkperformance indicates that for a representa-
tive focal-plane-array requirement (1 — 2 Mhz signal bandwidth), the heat load in the dewar resulting from the readout
link could be a few tenths of a milliwatt, assuming a dynamic range of 5000. This compares to approximately 60 mw dis-
sipation measured for a conventional electronic output amplifier providing similar performance. The bandwidth of the
readout link is not limited by any characteristic of the link; analog fiber-optic data transmission is being actively pushed
into the microwave region 8 9 However, the inherent power speed tradeoffwould require increased power dissipation
on the focal plane at a higher data rate. For example, in order to provide a 100 Mhz signal bandwidth, the link dissipation
would become several tens of mW to maintain the assumed dynamic range of5000. This cryogenic heat load is dominated
by the optical power input to the modulator because most of it is dissipated in the modulating element. The electrical
power required to drive the modulator is negligible. Thus the most effective step toward improving the link power dissipa-
tion would be to lower the insertion loss of the modulator. The best achievable value of insertion loss is probably near
3—4 db, limited by the coupling from the cylindrical fiber core to the planar modulator waveguide. We have assumed 7
db in our analysis.

Dynamic range in the operating regime of interest is limited by quantum noise (equivalent to shot noise in the photo-
current) in the optical signal. Detector noise, for a well designed receiver module, will be swamped out by the relatively
high optical signal level. In general, dynamic range can be increased by increasing the power incident on the modulator,
so an inherent tradeoff results between dynamic range and heat load. The effect of laser noise (RIN noise) for a diode
laser source can be made negligible if optimum techniques are used. However, note that it is extremely important to
minimize or eliminate all back reflections that could return part of the optical signal to the laser. Diode lasers are very
sensitive to back reflection and their RIN can easily be increased by 40 db (2 orders of magnitude in terms of optical noise
power) if back reflections are significant. In such a case, the system dynamic range will be limited by laser noise, and fur-
ther improvement of dynamic range by increasing the linkpower is no longer possible. Angle polished connectors, non-re-
flecting attenuators, optical isolators, and optimum antireflection treatment of the modulator to fiber coupling should
all be incorporated 10

There are alternative configurations for an optical readout link that we have considered briefly in this work. The
alternatives involve three areas: first the type of optical modulator, second, the use of parallelism in the readout, which
is often cited as an inherent strong point for optics, and third the possibility of digital readout.

Waveguide modulators of the Mach-Zender or delta-beta types could be used in place of the MQW modulator we
investigated. An advantage of this type of modulator is a potential decrease in optical insertion loss. They are phase
modulators with no absorption being involved in the modulation process. MQW modulators can be configured to work
in a phase mode, and there are indications that a very strong phase effect can be realized in MQW structures . Alterna-
tively, phase modulators using either LiNbO3 12 13 14 , or non-linear polymers 15 16 couldbe used. There are no known
materials limitations that would preclude using either of these at cryogenic temperatures. As a practical matter, the diffi-
culty ofcoupling a fiber to a planar waveguide is a similar limitation in all these modulator types. Further, the modulating
voltage requirement of either LiNbO3 or NL polymer modulators appears to be somewhat larger, and their physical size
is very much larger than the MQW type. On balance, it seems that the MQW modulator is the best choice.
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A brief look at the possible advantages of a highly parallel (and therefore lower bandwidth) readout structure is in-
conclusive at this point. For example, a scaling analysis showed that multiple fiber links, one for each row (or pixel)
do not use significantly less power in total. Free space optics could be used to eliminate the need for a large number of
fibers in a highlyparallel readout arrangement However, the use of free-space optics would greatly complicate the design
of the focal plane configuration, in order to rigorously separate the readout light from the low-level image light, and also
to maintain alignment between the optical components inside and those outside of the dewar.

The scaling analysis did indicate that a different type ofparallelism, namely one where the dynamic range of the out-
put signal is subdivided (of which digital encoding is one example) can result in a significant power saving. For a digital
readout link, the conclusion seems quite clear cut; it performs much better than an equivalent analog one. A digital link
is essentially an ideal channel, both in terms offidelity and power, in comparison to other elements ofthe system. Howev-
er, the challenge has simply been transferred to an AIDcircuitwhich must now be incorporated in the focal plane. It is
not yet clear whether an overall net improvement in performance can be achieved, but related topics are being actively
pursued 17 18 19

Several things remain to be done before successful hardware can be implemented. The most important issue is to
determine what effects the cryogenic environment will have on the parts of the readout link that will be located in the
dewar. Changes in modulator parameters can be expected, as well as mechanical effects from differential expansivity.
The working optical wavelength of the modulator will decrease, and its transfer function should become steeper. There
is no performance penalty expected from the wavelength shift, but it is a large shift, expected to be about 50nm,andmust
be allowed for in design. The change to be expected in the slope of the modulation curve is not known at this point, but
it should be small. Equally important, the effect of thermal strains associated with the mounting of the modulator chip
and the fiber pigtails can be critical. Development ofpractical fabrication techniques that will withstand the thermal cycl-
ing without causing an unacceptable impact on performance is vital. The insertion loss at maximum transmission is a very
important parameter. Optimization of the fiber to modulator chip coupling is needed, and is closely related to the me-
chanical thermal design issue. Finally, in order for an optical readout link to function properly in a system sense, suitable
electronic stabilization techniques must be developed to maintain the desired operating conditions and with them the
calibration of the readout process.
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