Determination of the

conversion gain and the accuracy of its
measurement for detector elements and arrays

B. P. Beecken and E. R. Fossum

Standard statistical theory is used to calculate how the accuracy of a conversion-gain measurement
depends on the number of samples. During the development of a theoretical basis for this calculation, a
model is developed that predicts how the noise levels from different elements of an ideal detector array
are distributed. The model can also be used to determine what dependence the accuracy of measured
noise has on the size of the sample. These features have been confirmed by experiment, thus
enhancing the credibility of the method for calculating the uncertainty of a measured conversion gain.
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1. Introduction

One of the most fundamental issues regarding the
characterization of high-sensitivity photon detectors
is the determination of the signal generated per
photoelectron. This factor is often called the conver-
sion gain g and is defined by

0x

8= a(nq)) ’ (1)

where m is the quantum efficiency (photoelectrons
per incident photon), ® is the number of incident
photons during the detector’s integration period, and
x is the detector’s signal in appropriate units (e.g.,
millivolts). Itis desirable to have a large conversion
gain to maximize the signal-to-noise ratio in the
presence of readout noise, and thus g is an important
figure of merit. An accurate determination of the
conversion gain also enables a determination of the
detector’s quantum efficiency. Likewise any inaccu-
racy in conversion gain g could translate into an
inaccuracy in the determination of the quantum
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efficiency. Therefore it is of great importance to
have a sound method not only for determining g but
also for calculating the accuracy of that measurement.
We will develop the mathematics that underpins
such a method and demonstrate how this statistical
model agrees with experimental data.

If a detector is of sufficiently high quality that
photon shot noise dominates detector noise, conver-
sion gain g can be determined by using the fact that
shot noise obeys the Poisson distribution. A fluctua-
tion S in a detector signal x is caused by a fluctuation

in the number of detected photons S, 4. Thus
S = o S0 =8S 2
- a(nCD) nd — 8 nd- ( )

For a Poisson distribution the standard deviation is
simply the square root of the mean. If we take a
typical fluctuation S, 4 to be the standard deviation,

Suo = D2 3

Assuming the conversion gain is linear, Eq. (1) can be
used to find the mean number of photoelectrons:

n® =Xx/g. (4)
Combining Eqs. (2)-(4) yields the well-known result
g=S8%x. (5)

Because we have chosen S,, to be the standard
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deviation of the photoelectrons, S must be the stan-
dard deviation of signal x. It follows that S2 is the
variance of x. This result, Eq. (5), is important
because it indicates that an accurate determination
of a signal’s mean x and variance S2 provides an
accurate value for the detector’s conversion gain g.

Once it is established that a detector is working at
the photon noise limit, Eq. (5) makes calculating the
conversion gain fairly simple. The mean signal x is
easily calculated, and the sample variance S? is
given by

oo L
N-13

M=

be; — xP, 6)

where N is the number of samples taken. (For an
element in a detector array, N is simply the number
of frames.) In practice one often plots S2 as a
function of x to determine the best value for the
conversion gain, assuming that g is independent of
signal size x and N is a reasonably large value.
However, limiting the measurement of the conver-
sion gain to one particular signal level enables a
straightforward and precise calculation of the un-
certainty of g. This calculation is discussed in
Section 4.

In a CCD, element-to-element optical aperture
variations are caused by photolithographic varia-
tions during device fabrication, often traceable to the
photomasks. Interference effects caused by overlap-
ping polysilicon gates can also contribute to nonuni-
formity because subtle variations in layer thick-
nesses can yield large variations in monochromatic
optical transmission. The conversion gain for a
CCD, however, has no intrinsic pixel-to-pixel variabil-
ity because all charge packets in a CCD are read out
by a single-output amplifier. Often a single frame
is used in a CCD to determine S2 for a particular
value of x, assuming that the pixel-to-pixel varia-
tions in x are small, the subscript in Eq. (6) refers to a
given pixel in the array, and N is the number of
pixels used for the calculation.

In an active pixel sensor! (APS) that has an ampli-
fier within each pixel, pixel-to-pixel variations in
conversion gain may be introduced during device
fabrication in addition to the usual optical aperture
variations of a CCD. (Because the APS does not
need overlapping gates, interference effects are mini-
mal.) The amplifiers also contain offset variations
that lead to fixed pattern noise. To characterize an
APS sensor, many frames of data are required for
each pixel so that each pixel may be characterized as
an individual detectorﬁlmpliﬁer combination.

The issue addressed in this paper is determining
the accuracy to which g has been measured. How
accurate are the values of S? and x? How many
samples N need to be taken to obtain an accurate
value of g? Clearly the standard deviation of the
mean signal can be calculated by the usual method:

Std Dev(x) = S2/N. (7)
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The big issue in finding the uncertainty in g, how-
ever, is determining with what accuracy the sample
variance S? is known. Our experience shows that
as the number of frames for a detector array in-
crease, the sample variances of individual detector
elements start to coalesce. This observation is con-
sistent with the expectation that larger samples will
provide more precise values of S2. But how rapidly
should the variance of the sample variance decrease
with N? In other words, how many samples N yield
a particular accuracy for the sample variance?

Knowing the typical fluctuations of the sample
variance S2, in addition to being valuable for deter-
mining the conversion gain, is important for deter-
mining the quality of detector arrays. The value of
S2 for a particular detector element is a good indica-
tion of its noise. Consequently, the sample vari-
ances of the different detector elements are com-
pared to check for uniformity across the array.
However, even if each detector element performs
identically, each element still has different values of
S2? simply because of the statistical nature of the
sampling process. An infinite dataset cannot be
evaluated; therefore S2 represents only the variance
of a finite sample. Thusitisimportant to know how
the distribution of S2? depends on the number of
samples taken so that one knows how much varia-
tion in noise can be expected across a uniform array.

We now have three goals for the statistical model
that we will develop. First, we wish to determine a
probability distribution for the sample variance S2.
This distribution allows us to generate a histogram
of the noise levels of detector elements in a uniform
array. Thus we are able to compare the distribution
of noise from a real detector array with an ideal one.
Second, we would like to determine how the width of
this distribution (the variance of the sample vari-
ance) depends on the number of samples (or frames)
taken. This result provides a concrete measure of
the uncertainty in S? and will be useful as a guide for
determining how much data should be taken.
Third, and of greatest importance, we want to use
this statistical model to determine how the accuracy
of a measurement of the conversion gain when Eq. (5)
is used depends on the number of samples.

2. Standard Statistical Theory Applied to Detectors

Consider one detector element in an array with a
fixed integration time. Suppose this element works
perfectly so that the only noise is photon shot noise.
The number of incident photons arriving per frame
and the generated photoelectrons obey the Poisson
distribution. According to the central limit theo-
rem, if the integration time is long enough to gener-
ate sufficient numbers of photoelectrons (i.e., at least
an average of 100), the distribution very closely
approximates the Gaussian distribution.?

The true mean p and variance o2 can be attained
only by taking an infinite number of samples or



frames. Such a distribution is called the parent
population distribution; p is the population mean,
and o2 is the population variance. Any data ob-
tained experimentally are necessarily a subset of the
population distribution and are called the sample
distribution. Let the sample distribution consist of
values x4, x5, . .., xy. Each x; is the value of the
detector element for the ith frame. Thus x;,
X9, ...,%Xy 1s a random sample from the Gaussian
population distribution. The sample distribution
has a sample mean x and a sample variance S2.
Standard references® on statistics prove that in
these conditions

SZ
— N = 1) =xy-1% 8)

(on

where xy_1? is a chi-square random variable with
N — 1 independent degrees of freedom. This theo-
rem is the starting point for developing our statisti-
cal model.

The probability density function of the chi-square
distribution P(x,2) and its properties are well known.*
Because they are used to build our statistical model,
we list the probability density function and one of its
properties here:

L
Var(x,?) = 2n. (10)

With a little effort it is possible to find the probabil-
ity density function for the ratio of the sample

variance to the population variance. Combining
Egs. (8) and (9) yields
N-1 N-3
N — 1\5 (S35~ N — 1\ §2
g2 2 o2 FPITI T 2
Aol N1 e
2

We have now accomplished the first goal set for our
statistical model. Equation (11) is the probability
density function that we needed to describe the
distribution of sample variances S2. (A plot of this
probability density function for a specific case, along
with data, is provided in Section 3.) Note that this
function is in terms of S2/02, which we call the
normalized sample variance. This normalization is
necessary so that the probability density function
may be applied to any variance regardless of its
magnitude.

We can rewrite Eq. (8) so that the sample variance
is in terms of the chi-square random variable:

0.2

S? = N_1 Xv-12 (12)

Now Eq. (10) can be used to calculate the variance of
the sample variance:

o2
2 — 2
Var(S?) VarN X1 )
o2 2
- [y Va2
2 22

This result is important because it accomplishes the
second goal that we set for the statistical model.
We now know how the width of a distribution of
sample variances S2 depends on the number of
samples N. The validity of Eq. (13)is demonstrated
by plotting it alongside data that are described in
Section 3.

The standard deviation of the sample variance is
also a useful statistic and is simply the square root of
Eq. (13):

2 1/2

N -1

Std Dev(S?) = o2

(14)

Perhaps calculation of the confidence interval for
S2 is of the greatest practical value. In statistics
texts it is shown that when x4, x,, . . . , x constitutes
a random sample of size N from a Gaussian popula-
tion distribution with variance o2, with 100(1 — a)%
confidence the population variance o? exists within
the interval®

Novs L wens

2 2
Xa/2 X1-a/2

This inequality applies directly to our desire to
determine the accuracy of some sample variance S2.
[In Section 4 inequality (15) enables us to achieve our
third goal of calculating the accuracy to which the
conversion gain has been determined.|

Because the cumulative chi-square distribution
function is well documented, it is possible to calcu-
late various confidence intervals as a function of N.
Recall that N is the number of frames used to obtain
S2. Thus the experimenter can determine the re-
quired number of frames for a desired accuracy.
Figure 1 shows a plot of the upper and lower limits of
a 68.3% confidence interval as a function of N. (We
have chosen a = 0.317.) The vertical axis is the
factor that is multiplied by S2. Note that although
a 68.3% confidence interval usually corresponds to a
width of two standard deviations, in this case they
are not the same for small N because x? does not obey
the Gaussian distribution.

3. Data

Data were obtained with a 64 X 64 photodiode
complementary metal-oxide semiconductor (CMOS)
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Fig. 1.

Confidence interval limits of 68.3% for sample variance as a function of the number of frames N. To find the limits of the

interval, multiply the measured sample variance by the value for the appropriate number of frames or samples N. As described in

Section 4 this plot can also be used to obtain an excellent estimate of the accuracy of a conversion-gain measurement.

(Note that N does

not determine the confidence level but rather the width of the interval for a particular level of confidence.)

APS similar to that described in Ref. 6. The array
was uniformly illuminated with a dc incandescent
light source. These data consisted of the sample
variance S? for each detector element in the array
after 32 frames (N = 32). The average of all the
individual pixel sample variances was found and
assumed to be a reasonably accurate estimate of the
true population variance o2 (This method works
only if the electrical noise is relatively unchanged
from pixel to pixel, and there is a vastly larger
number of pixels than frames.) Each pixel’s sample
variance S? was then divided by 2. The resulting

normalized sample variances were divided to make
the histogram shown in Fig. 2. A plot of Eq. (11) is
superimposed to illustrate the fit. In this case, as
the figure clearly shows, most of the difference in
apparent noise levels between detector elements can
be attributed to the inherent statistical variations of
the sample variance and does not indicate poor
uniformity of the detector array.

How does the width of the probability distribution
of the normalized sample variance SZ}(ITZ depend on
the number of frames of data? The ratio of the
variance of the sample variance to the population
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Fig. 2. Histogram for 32 frames of a 64 X 64 detector array. Superimposed on the 34-bin histogram is the probability density function

for the normalized sample variance [Eq. (11)].
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Fig. 3. Variance of the sample variance as a function of N. The line is the theoretical dependence given by Eq. (16). The data are

derived from 5000 samples for each of 25 detector elements.

variance squared is found by rewriting Eq. (13):

Var(S?) 2

(0?)? TN-1

(16)

This ratio is plotted in Fig. 3 along with data taken
(from an APS 256 X 256 photogate array’) for several
different N. The raw data for one detector element
consisted of the signal x for 5000 frames. For each
N the data were broken into 5000/N groups. The
sample variance S2 for each group was obtained with
Eq. (6). Then the variance of the sample variances
was calculated, yielding Var(S2. To obtain an esti-

mate of the true population variance, all 5000 values
This

taken together were used to calculate o2

0.90 v
0.80 +
0.70 +
0.60 +
0.50 +

0.40 +

Relative Probability

0.30 +

0.20 +

0.10

0.00

process was repeated for 25 different detector ele-
ments. In most cases the 5000 values are suffi-
ciently larger than N to yield a useful estimate of ¢2.
Note, however, that, although the data track the
theory nicely, they spread out at large N. Some
spreading is expected when the sample size N ap-
proaches the size of the approximation to the parent
population. In this plot, however, any spreading is
greatly exaggerated by the logarithmic vertical axis.

The sample variance does not follow the Gaussian
distribution. Consequently, for small sample sizes,
the probability distribution of the normalized sample
variance is asymmetrical. This effect is illustrated
in Fig. 4, which includes both the theoretical distribu-
tion described by Eq. (11) and data for sample vari-
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t t u J
1.50 2.00 2.50 3.00

Sample Variance / Population Variance

Fig. 4. A 34-bin histogram for five frames and the corresponding probability density function for the normalized sample variance [Eq.
(11)]. The data are derived from 1000 five-sample sets for each of six detector elements.
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ances after five frames. The data were derived from
the same set used to generate Fig. 3. The histo-
gram consists of 1000 N = 5 groups from each of six
randomly selected detector elements.

Note that, because the sample variance is an
unbiased estimator of the population variance, the
sample variances should converge on the population
variance as the sample size is increased. In Fig. 5
the second dataset is used to illustrate this point.
The sample variances derived from all 5000/N groups
were averaged together to yield a mean sample
variance for N frames. Each mean sample variance
was then divided by the variance calculated for all
5000 frames (to simulate o2). This method was
repeated for several N values for each of 25 detector
elements. Note that the symmetry of the spread of
values about the expected value is a strong indica-
tion that 1/f noise is not a factor in these measure-
ments. Such a result is not surprising because this
device was designed with correlated double sam-
pling specifically to minimize 1 / fnoise.® If1 / fnoise
is significant, we expect the sample variance to
increase with the number of samples.

4. Uncertainty in Conversion Gain

Now that we have calculated the accuracy with
which the sample variance S? is known for some
number of samples N, we must turn to determining
the accuracy of a given measurement of the conver-
sion gaing. From Eq. (5) we wish to determine

S2

Std Dev(g) = Std Dev -

' (17)

The standard deviation of the mean signal x is given
in Eq. (7), and the standard deviation of the sample

S2 and x are independent variables, we may use the
usual error propagation equation:

2

9
S.2 + &

oy

og

0x

8.2 =

g

(18)

2
s

If welety = S2and x = x and use Egs. (5), (7), and (14),
we can show after a significant amount of algebra
that

Go S'8% o 2
s TH@N BN-1

(19)

Again utilizing Eq. (5), we simplify this expression to

S, [g1 (o}t 2 ]2 ”
g |znTls) No1 (20)

Which term dominates Eq. (20)? Consider the
multiplicative terms that depend on N. Obviously

2 1
—>_

N_1 N N=1.

for (21)

In fact the left-hand side of inequality (21) is always
at least double the right side with the difference
being more significant for small N. Now the ratio of
the sample variance S? to the population variance o2
must be of the order of unity. All that remains to be
considered is the ratio of the conversion gain g to the
mean signalx. We know that

x2 > S2

is always true whenever all x; terms are positive.
(The mean of the distribution must be much greater

variance S2 was calculated to be Eq. (14). Because than one standard deviation S or part of the distribu-

1.04 +
o 1.03+
o
i
k]
-
S 1024

o

s 8
® L] =
= 1.01 ¢+ a B
[-% E a a ]
& | ] ]
~ B : g I [ || "
N T R R
[ 8 s
T E = . a
S 099+
i B n
5 = .
g 0.98 + B
(]
£
]
Q
= o097+ u

0.96 ++ -+ -+ -

1 10 100 1000 10000

Number of Frames

Fig. 5. Mean normalized sample variances for 25 detector elements.

The scatter around unity occurs because the sample variance is

an unbiased estimator of the population variance. The symmetrical scatter indicates that 1/fnoise is insignificant.
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Substituting Eq. (5) yields
x> g. (22)

tion will be negative.)

This inequality is consistent with our data, which
typically have mean signals of the order of 100 mV
and measured conversion gains of the order of 10
nV/electron.

As a consequence of these considerations, it is
apparent that the second term of Eq. (20) completely
dominates the first. Thus a very good approxima-
tion of Eq. (20)is

% — 0-_2 L)lz , (23)
g SzZIN-1
or, substituting Eq. (5) for g, we have
o2/ 2 |2
Std Dev(g) = S, = ; m) . (24)

This expression is the desired result, except that it
requires knowledge of the population variance.
Therefore, we substitute Eq. (14) to obtain

Std Dev(S?
Std Devlg) = ——— (25)

As a result of this analysis it is clear that the
uncertainty in the measured conversion gain is due
almost entirely to the uncertainty in the sample
variance. Consequently the confidence intervals for
the sample variance plotted in Fig. 1 are valid
intervals for the conversion gain. The numerical
limits need only be multiplied by the measured gain
instead of the sample variance.

5. Conclusion

Using standard statistical theory, we have developed
amodel that describes how photon noise appearsin a
photon-noise-limited detector array. This model can
be used to determine how the accuracy of a measured
sample variance depends on the size of the sample.
The probability density function predicts how the
variances from different elements of a detector array
will be distributed, thus indicating the noise unifor-
mity present on an ideal array. Finally, and of
primary importance, the statistical model enabled
us to calculate how the accuracy of a conversion gain
determined by Eq. (5) depends on the number of
samples taken.

The model developed here has been well confirmed
by data taken with two different detector arrays (one
photogate and the other photodiode) from two differ-
ent manufacturers. Thus the model applies to detec-
tor arrays independent of the fabrication process,
design rules, or device technology. It is important
to point out, however, that a detector may yield data
that fit our statistical model even if it is not photon
noise limited. The statistics work for samples of
any Gaussian distribution. Consequently, electri-
cal noise, provided that it is Gaussian, is indistin-
guishable from photon noise. Our model provides a

necessary condition, but not a sufficient condition,
for determining whether a detector or array is
photon noise limited.

We also tested a third detector array that yielded
results that did not fit the theory. In fact the data
from this array appeared to be quieter than one
would expect based on photon noise limits. Cur-
rently, we believe that this effect can be explained by
a conversion gain that becomes smaller as the illumi-
nation becomes greater. Distortion of the photon
noise limit by a nonlinear conversion gain should be
studied further. Nevertheless this experience does
illustrate the importance of the assumption of linear
conversion gain. Perhaps for this reason it is best
to determine g by plotting the variance as a function
of the mean signal. This method has the distinct
advantage of turning up nonlinearities. Our model,
however, gives the uncertainty for each point on such
a plot. Thus the two methods are complementary
and can be used together to determine both the
conversion gain and the accuracy of that determina-
tion.
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